Bibliografia - Valorvitis 2.0

Valorvitis 2.0
Vai ai contenuti
Bibliografia dei Partner

* Amendola D., De Faveri D.M. and Spigno G. 2010.Grape marc phenolics: extraction kinetics, quality and stability of extracts. J. Food Eng. 97:384.
* Basso D., Weiss-Hortala E., Patuzzi F., Baratieri M., Fiori L. 2018. In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies. 11: 1379.
* Battista F., Tomasi D., Porro D., Caicci F., Giacosa S. and Rolle L. 2015. Winegrape berry skin
thickness determination: comparison between histological observation and texture analysis determination. Ital. J. Food Sci. 27: 136.
* Ben Mohamed H., Duba K.S., Fiori L., Abdelgawed H., Tlili, I., Tounekti, T., Zrig A. 2016. Bioactive compounds and antioxidant activities of different grape (Vitis vinifera L.) seed oils extracted by supercritical CO2 and organic solvent. LWT - Food Science and Technology 74: 557-562.
* Binaschi M., Garrido G.D., Cirelli C., Spigno G. 2018. Biotechnological strategies to valorise grape pomace for food applications. Chemical Engineering Transactions 64: 367-372.
* Cappa C., Lavelli V. and Mariotti M. 2015. Fruit candies enriched with grape skin powders: physicochemical properties. LWT - Food Sci. Technol. 62: 569.
* Dordoni R., Duserm Garrido G., Marinoni L., Torri L., Piochi, M., Spigno, G.  2019. Enrichment of whole wheat cocoa biscuits with encapsulated grape skin extract. International Journal of Food Science. 2019:9161840.
* Dordoni, R., Duserm Garrido G., Marinoni L.,  Torri L., Piochi M., Spigno G. 2019.  
Enrichment of whole wheat cocoa biscuits with encapsulated grape skin extract. International Journal of Food Science. 2019:9161840.
* Duba K.S., Fiori L., 2016. Solubility of grape seed oil in supercritical CO2: experiments and modeling. Journal of Chemical Thermodynamics. 100: 44-52.
* Duba S.K. and Fiori L. 2015a. Extraction of bioactives from food processing residues using techniques performed at high pressure. Curr Opin Food Sci. 5:14.
* Duba S.K. and Fiori L. 2015b. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids 98: 33.
* Fiori L. 2007. Grape seed oil supercritical extraction kinetic and solubility data: critical approach and modeling. J. Supercritical Fluids, 43, 43-54.
* Fiori L. 2010. Supercritical extraction of grape seed oil at industrial-scale: Plant and process design, modeling, economic feasibility. Chem. Eng.Proc. 49: 866.
* Fiori L., Lavelli V., Duba K.S., Sri Harsha P.S.C., Mohamed H. Ben and Guella G. 2014. Supercritical CO2 extraction of oil from seeds of six grape cultivars: modelling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J. Supercrit. Fluids 94: 71.
* Lavelli V., Sri Harsha P.S.C, Spigno G,. 2016. Modelling the stability of maltodextrin-encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chemistry Volume 209:323-331.
* Lavelli V., Sri Harsha P.S.C. 2019. Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Research International. 119: 822-828.
* Lavelli V., Sri Harsha P.S.C. and Fiori L. 2015a. Screening grape seeds recovered from winemaking byproducts as sources of reducing agents and mammalian α-glucosidase and α-amylase inhibitors. Int. J. Food Sci. Technol. 50: 1182.
* Lavelli V., Sri Harsha P.S.C., Ferranti P., Scarafoni A. and Iametti S. 2016a. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase – Effect of food matrix and processing on efficacy. Food Func. 7:1655.
* Lavelli V., Sri Harsha P.S.C., Ferranti P., Scarafoni A., Iametti S. 2016. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase - effect of food matrix and processing on efficacy. Food and Function. 7:1655-1663.
* Lavelli V., Sri Harsha P.S.C., Laureati M., Pagliarini E. 2017. Degradation kinetics of encapsulated grape skin phenolics and micronized grape skins in various water activity environments and criteria to develop wide-ranging and tailor-made food applications. Innovative Food Science and Emerging Technologies. 39:156-164.
* Lavelli V., Sri Harsha P.S.C., Piochi M., Torri L. 2017.  Sustainable recovery of grape skins for use in an apple beverage with antiglycation properties. International Journal of Food Science and Technology. 52: 108-117.
* Lavelli V., Sri Harsha P.S.C., Torri L. and Zeppa G. 2014. Use of winemaking by-products as an ingredient for tomato puree: The effect of particle size on product quality. Food Chem. 152: 162.
* Lavelli V., Sri Harsha, P. S. C. and Spigno, G. 2016b. Modelling the stability of maltodextrin- encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chem. 209: 323.
* Lavelli V., Sri Harsha, P.S.C., Mariotti, M., Marinoni, L. and Cabassi G. 2015b. Tuning physical properties of tomato puree by fortification with grape skin antioxidant dietary fibre. Food Bioprocess Technol. 8:1668.
* Lavelli, V., Torri, L., Zeppa, G., Fiori L., Spigno G. 2016. Recovery of winemaking by-products for innovative food applications. Italian Journal of Food Science 28: 542-564.
* Marchiani R., Bertolino M., Belviso S., Giordano M., Ghirardello D., Torri L., Piochi M. and Zeppa G. 2015b. Yogurt enrichment with grape pomace: effect of grape cultivar on physicochemical, microbiological and sensory properties. J. Food Qual. 39: 77.
* Marchiani R., Bertolino M., Belviso S., Giordano M., Ghirardello D., Torri, L., Piochi M., Zeppa G. 2016. Yogurt enrichment with grape pomace: effect of grape cultivar on physicochemical, microbiological and sensory properties. Journal of Food Quality. 39: 77-89.
* Marchiani R., Bertolino M., Ghirardello D., McSweeney P.L.H. and Zeppa G. 2015a. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 53:1585.
* Marchiani R., Bertolino M., Ghirardello D., McSweeney P.L.H., Zeppa G. 2016.  Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. Journal of Food Science and Technology 53: 1585-1596.
* Moncalvo A., Marinoni L., Dordoni R., Garrido G.D., Lavelli V., Spigno G. 2016. Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. Pag: 1116-1126.
* Pedroza M.A., Amendola D., Maggi L., Zalacain A., De Faveri D.M. and Spigno G. 2015. Microwave-assisted extraction of phenolic compounds from dried waste grape skins. Int. J. Food Eng., 11:359.
* Purnomo C.W., Castello D., Fiori L. 2018. Granular activated carbon from grape seeds hydrothermal char. Applied Sciences (Switzerland). 8: 331.
* Spigno G. 2015. Recupero ed utilizzazione dei sottoprodotti enologici. In: “La nuova viticoltura – Innovazioni tecniche per modelli produttivi efficienti e sostenibili”. Palliotti, A., Poni, S., Silvestroni, O. (Eds.), pp 393-404. Edagricole, Milano.
* Spigno G., Amendola D., Dahmoune F. and Jauregi P. 2015. Colloidal gas aphrons based separation
process for the purification and fractionation of natural phenolic extracts. Food Bioproducts Process. 94:434.
* Spigno G., De Faveri D.M. 2009. Microwave assisted extraction of tea phenols: a phenomenological study. J. Food. Eng. 91, 210-217.
* Spigno G., Donsì F., Amendola D., Sessa M., Ferrari G. and De Faveri D.M. 2013. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J. Food Eng. 114:207.
* Sri Harsha P.S.C., Gardana C., Simonetti, P., Spigno G. and Lavelli V. 2013. Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresource Technol. 140:263.
* Sri Harsha P.S.C., Lavelli V. and Scarafoni A. 2014. Protective ability of phenolics from white grape vinification by-products against structural damage of bovine serum albumin induced by glycation. Food Chem. 15:220.
* Sri Harsha P.S.C., Mesias M., Lavelli V., Morales F.J. 2016. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species. Journal of the Science of Food and Agriculture 66:656-663.
* Stojanovic M., Marinoni L., Cabassi G., Antic M. 2018. Development of semiliquid ingredients from grape skins and their potential impact on the reducing capacity of model functional foods. Journal of Food Quality. 2018: 1969680.
* Torri L., Piochi M., Lavelli V. and Monteleone E. 2015. Descriptive sensory analysis and consumers’ preference for dietary fibre- and polyphenol-enriched tomato purees obtained using winery by-products. LWT – Food Sci. Technol. 62:294.
* Torri L., Piochi M., Marchiani R., Zeppa G., Dinnella C. and Monteleone E. 2016. A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders. J. Dairy Sci. 99: 194.
* Torri L., Piochi M., Marchiani R., Zeppa G., Dinnella C., Monteleone E. 2016. A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders. Journal of Dairy Science. 99: 194-204.

Bibliografia sul tema

* Abreu j., Quintino l., Pascoal G., Postingher B., Cadena R., Teodoro A. 2019. Antioxidant capacity, phenolic compound content and sensory properties of cookies produced from organic grape peel (Vitis labrusca) flour. International Journal of Food Science and Technology 54: 1215-1224.  
* Ahn J., Grun I.U. and Mustapha A. 2007. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 24:7.
* Alba D.F., Campigotto G., Cazarotto C.J., dos Santos D.S, Gebert R.R., Reis J.H., Souza, C.F., Baldissera M.D., Gindri A.L., Kempka A.P, Palmer E.A., Vedovatto M., Da Silva A.S. 2019.  Use of grape residue flour in lactating dairy sheep in heat stress: Effects on health, milk production and quality. Journal of Thermal Biology 82: 197-205.
* Amariei S., Norocel L., Pădureţ, S., Gutt G. 2018. Effect of grape seed flour on the quality of summer salami. Journal of Food Processing and Preservation. 42: 13601.
* Axten L.G., Wohlers M.W. and Wegrzyn T. 2008. Using phytochemicals to enhance health benefits of milk: Impact of polyphenols on flavor profile. J. Food Sci. 73: H122.
* Baldissera M.D., Souza C.F, Descovi S.N., Verdi C.M., Zeppenfeld C.C.  da Silva A.S., Santos R.C.V, Baldisserotto B. 2019. Grape pomace flour ameliorates Pseudomonas aeruginosa-induced bioenergetic dysfunction in gills of grass carp. Elsevier 506:359-366.
* Bazinet L. et al. 2009. Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membranes, J. Agric. Food Chem. 57: 10245.
* Bender A.B.B., De Mello Luvielmo M., Loureiro B.B., Speroni C.S., Boligon A.A., Da Silva, L.P., Penna N.G. 2016. Obtention and characterization of grape skin flour and its use in an extruded snack. Brazilian Journal of Food Technology 19:2016010.
* Bender A.B.B., Speroni C.S., Salvador P.R., Loureiro B.B., Lovatto N.M., Goulart, F.R., Lovatto M.T., Miranda M.Z., Silva L.P., Penna N.G. 2017.  Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. Journal of Culinary Science and Technology 15: 143-157.  
* Beres C., Freitas S.P., Godoy R.L.D.O., de Oliveira D.C.R., Deliza R., Iacomini M., Mellinger-Silva C., Cabral L.M.C. 2019.  Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? Journal of Functional Foods 56: 276-285.
* Beverige T.H.J., Girard B., Kopp T. and Drover J.C.G. 2005. Yield and composition of grape seed oil extracted by supercritical carbon dioxide and petroleum ether: varietal effects. J. Agric. Food. Chem. 53: 1799.
* Bordiga M. 2015. Valorization of wine making by-products. p.365. CRC Press.
* Botella C. et al. 2007. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42, 98–101.
* Canett Romero R. et al. 2004. Caracterización de galletas elaboradas con cascarilla de orujo de uva. ALAN, 54, 1, 93-99.
* Cao X., Ito Y. 2003. Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. J. Chrom. A, 1021, 117.
* Carpenter R., O’Grady M.N., O’Callaghan Y.C., O’Brien N.M. and Kerry, J.P. 2007. Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci. 76: 604.
* Casazza A.A. et al. 2010. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 100, 50–55.
* Charradi K., Mahmoudi M., Bedhiafi T., Kadri S., Elkahoui S., Limam F., Aouani E. 2017. Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: Gender dependency.  Biomedicine and Pharmacotherapy 87: 519-526.
* Cho Y.J., Lee H.G., Seo K.H., Yokoyama W., Kim H. 2018. Antiobesity effect of prebiotic polyphenol-rich grape seed flour supplemented with probiotic kefir-derived lactic acid bacteria. Journal of Agricultural and Food Chemistry. 66: 12498-12511.
* Chouchouli V., Kalogeropoulos N., Konteles S.J., Karvela E., Makris D.P., Karathanos V.T. 2013. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT – Food Sci. Technol. 53: 522.
* Clifford H. Jr., Ross C. F. 2011. Total phenolic content, consumer acceptance, and instrumental analysis of bread made with grape seed flour. J. Food Sci. 76, 7, 428-436.
* Corrales M., Fernandez A., Vizoso Pinto M.G., Butz P., Franz C.M.A.P., Schuele E.,Tauscher B. 2010. Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food Chem.Toxicol. 48: 3476.
* Costa C., Lucera A., Marinelli V., Del Nobile M.A., Conte A. 2018. Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology. 55: 4174-4183.
* Couto S.R. et al. 2006. Utilisation of grape seeds for laccase production in solid-state fermentors. J. Food Eng. 74, 263–267.
* Couto S.R., Herrera J.L.T. 2006. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24, 500–513.
* Cowan M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol Rev. 12(4), 564-582
* Crews C., Hough P., Godward J., Brereton P., Lees M., Guiet S. and WinkelmannW. 2006. Quantitationof the main constituents of some authentic grape seed oils of different origin. J. Agric. Food Chem. 54: 6261.
* Davidov-Pardo G., Moreno M., Arozarena I., Marín-Arroyo M.R., Bleibaum R.N. and Bruhn C.M. 2012. Sensory and consumer perception of the addition of grape seed extracts in cookies. J. Food Sci. 77: S430.
* Deamici K.M., de Oliveira L.C.,  da Rosa G.S., Zavareze E.R., de Oliveira E.G. 2018. Development of cookies from agroindustrial by-products. Revista Brasileira de Fruticultura. 40: 2.
* Drewnowski A. and Gomez-Carneros C. 2000. Bitter taste, phytonutrients and the consumer: a review. Am. J Clin. Nutr. 72:1424.
* Felix da Silva D., Matumoto-Pintro P.T., Bazinet L., Couillard C. and Britten M. 2015. Effect of commercial grape extracts on the cheese-making properties of milk. J. Dairy Sci. 98:1552.
* Fernandes L., Casal S., Cruz R., Pereira J.A. and Ramalhosa E. 2013. Seed oils of ten traditional Portuguese grape varieties with interesting chemicals and antioxidant properties. Food Res. Int. 50: 161.
* Fernandez J., Perej-Alvarez J.A. and Fernandez–Lopez J.A. 1997. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 59: 345.
* Freitas L.D.S, Dariva C., Jacques R.A. and Caramao E.B. 2013. Effect of experimental parameters in the pressurized liquid extraction of Brazilian grape seed oil. Sep. Purif. Technol. 116: 313.
* Fróes H.G., Jácome I.M.T.D., Tavares R.A., Garcia R.G., Domingues C.H.D.F., Bevilacqua, T.M.S., Martinelli M., Naas I.A., Borille R.  2018. Grape (Vitis vinifera) pomace flour as pigment agent of quail eggs. Revista Brasileira de Ciencia Avicola. 20: 183-188.
* Han J. et al. 2011. Polyphenolic compounds as functional ingredients in cheese. Food Chem. 124, 1589–1594.
* Han J., Britten M., St-Gelais D., Champagne C. P., Fustier, P. Salmieri, S. and Lacroix M. 2011a. Effect of polyphenolic ingredients on physical characteristics of cheese. Food Res. Int. 44:494.
* Han J., Britten M., St-Gelais D., Champagne C.P., Fustier P., Salmieri S., and Lacroix M. 2011b.. Polyphenolic compounds as functional ingredients in cheese. Food Chem. 124:1589.
* Hanganu A., Todaşcă M.-C., Chira N.A., Maganu M. and Roşca S. 2012. The compositional characterization of Romanian grape seed oils using spectroscopic methods. Food Chem. 134: 2453.
* Hoye C. and Ross C.F. 2011. Total phenolic content, consumer acceptance, and instrumental analysis of bread made with grape seed flour. J. Food Sci. 76: S428.
* Ishimoto E.Y., Capriles V.D., Matias A.G., Baccarin A., Torres E.A.F.S. 2009. Formulating functional popsicle with wine and grape juice by-products.  Acta Horticulturae 841: 603-606.
* Jimenez L. et al. 2008. Alternative raw materials and pulping process using clean technologies. Ind. Crops Prod. 28(1), 11-16.
* Jou Cheng V. et al. 2010. The impact of grape skin bioactive functionality information on the acceptability of tea infusions made from wine by-products. J. Food Sci., 75, 4, 167-172.
* Kammerer D., Claus A., Carle R. and Schieber A. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC–DAD–MS/MS. J. Agric. Food Chem. 52: 4360.
* Karnopp A.R., Figueroa A.M., Los P.R., Teles J.C., Simões D.R.S., Barana A.C., Kubiaki F.T., de Oliveira J.G.B., Granato D. 2015. Effects of whole-wheat flour and bordeaux grape pomace (Vitis labrusca L.) on the sensory, physicochemical and functional properties of cookies. Food Science and Technology 35: 750-756.
* Karnopp A.R., Margraf T., Maciel L.G., Santos J.S., Granato D. 2017. Chemical composition, nutritional and in vitro functional properties of by-products from the Brazilian organic grape juice industry. International Food Research Journal. 24: 207-214.
* Karnopp A.R., Oliveira K.G., De Andrade E.F., Postingher B.M., Granato D. 2017. Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives. Food Chemistry 233: 401.
* Kuchtová V., Kohajdová Z., Karovičová J., Lauková M. 2018. Physical, Textural and Sensory Properties of Cookies Incorporated with Grape Skin and Seed Preparations. Polish Journal of Food and Nutrition Sciences. 68: 309-317.
* Kulkarni S., De Santos F.A., Kattamuri S., Rossi S.J. and Brewer M.S. 2011. Effect of grape seed extract on oxidative, color and sensory stability of a pre-cooked, frozen, re-heated beef sausage model system. Meat Sci. 88: 139.
* Laureati M., Gaeta D. and Pagliarini E. 2014. Qualitative and sensory evaluation of Sangiovese red wine obtained from organically and conventionally grown grapes. Ital. J. Food Sci. 26: 355.
* Laureati M., Jabes D., Russo V. and Pagliarini E. 2013. Sustainability and organic production: how information influences consumer’s expectation and preference for yogurt. Food Qual. Pref. 30: 1.
* Llobera A., Can J. 2007. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chem. 101, 659–666.
* Lucera A., Costa C., Marinelli V., Saccotelli M.A., Del Nobile M.A., Conte A. 2018. Fruit and vegetable by-products to fortify spreadable cheese. Multidisciplinary Digital Publishing Institute (MDPI). 7: 61.
* Maier T., Fromm M., Schieber A., Kammerer D.R. and Carle R. 2009a. Process and storage stability of anthocyanins and non-anthocyanin phenolics in pectin and gelatin gels enriched with grape pomace extracts. Eur. Food Res.Technol. 229: 949.
* Maier T., Schieber A., Kammerer D.R. and Carle R. 2009b. Residues of grape (Vitis vinifera) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 112: 551.
* Marinelli V., Padalino L., Conte A., Del Nobile M.A., Briviba, K. 2018.  Red grape marc flour as food ingredient in durum wheat spaghetti: Nutritional evaluation and bioaccessibility of bioactive compounds. Food Science and Technology Research. 24:1093-1100.
* Marinelli V., Padalino L., Nardiello D., Del Nobile M.A. and Conte A. 2015. New approach to enrich pasta with polyphenols from grape marc. J. Chem. 2015:1.
* Max B. et al. 2009. Ferulic acid and p-coumaric acid solubilisation by alkaline hydrolysis of the solid residue obtained after acid prehydrolysis of vine shoot prunings: effect of the hydroxide and pH. Biochem. Eng. J., 43, 2, 129-134.
* Mildner-Szkudlarz S. et al. 2011. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 46, 1485–1493.
* Mildner-Szkudlarz S., Bajerska J., Zawirska- Wojtasiak R. and Górecka D. 2013. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 93: 389.
* Mildner-Szkudlarz S., Zawirska-Wojtasiak R., Szwengiel A. and Pacyński M. 2011. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 46: 1485.
* Mironeasa S. et al. 2011. The effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. J. Texture Studies, 43, 1, 40-48.
* Mironeasa S., Iuga M., Zaharia D., Mironeasa C., 2019.  Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food and Bioprocess Technology 12: 228-245.
* Muncaciu M.L., Marin F. Z., Pop N., Babes A.C., Bunea C.I., Balea S.S., Calugar A. 2018. Functional tannins in grape pomace flours of feteasca neagra and Italian riesling. Revista de Chimie 69: 2372-2376.
* Muncaciu M.L., Zamora Marín F., Pop N., Babeş A.C. 2017. Comparative polyphenolic content of grape pomace flours from 'Fetească Neagră' and 'Italian riesling' cultivars.  Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45: 532-539.  
Nascimento E.D.A., Melo E.D.A., Lima V.L.A.G.D. 2018. Ice Cream with Functional Potential Added grape Agro-Industrial Waste. Journal of Culinary Science and Technology. 16: 128-148.
* Nissen L.R., Byrne D. V., Bertelsen G. and Skibsted L.H. 2004. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis. Meat Sci. 68: 485.
* Nissen L.R., Månsson L., Bertelsen G., Huynh-Ba T. and Skibsted L.H. 2000. Protection of dehydrated chicken meat by natural antioxidants as evaluated by electron spin resonance spectrometry. J. Agric. Food Chem. 48: 5548.
* O’Connell J.E. and Fox P.F. 2001. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. Int. Dairy J. 11:103.
* Oliveira D.M., Marques D.R., Kwiatkowski A., Monteiro A.R.G., Clemente E. 2013. Sensory analysis and chemical characterization of cereal enriched with grape peel and seed flour. Acta Scientiarum Technology 35: 427-431.
* Oprea O.B., Apostol L., Bungau S., Cioca G., Samuel A.D., Badea M., Gaceu L. 2018.  Researches on the chemical composition and the rheological properties of wheat and grape epicarp flour mixes. Revista de Chimie 69: 70-75.
* Otles, S., Despoudi, S., Bucatariu, C., Kartal, C. 2015. Food waste management, valorization, and sustainability in the food industry. In: Food Waste Recovery –Processing Technologies and Industrial Techniques, Galanakis, C. M. (Ed), Academic Press, Elevier.
* Ozen B.O., Eren M., Pala A., Ozmen I. and Soyer A. 2011. Effect of plant extracts on lipid oxidation during frozen storage of minced fish muscle. Int. J. Food Sci. Technol. 46:724.
* Özvural E.B., Vural H. 2011. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Science, 88, 179–183.
* Paini M., Casazza A.A., Aliakbarian B., Perego P., Binello A. and Cravotto G. 2016. Influence of ethanol/water ratio in ultrasound and high-pressure/high-temperature phenolic compound extraction from agri-food waste. Int. J. Food Sci. Technol. 51:349.
* Palma M., Taylor L. T. 1999. Fractional Extraction of Compounds from Grape Seeds by Supercritical Fluid Extraction and Analysis for Antimicrobial and Agrochemical Activities. J. Agric. Food Chem. 47, 5044.
* Pasqualone A., Bianco A.M. and Paradiso V.M. 2013. Production trials to improve the nutritional quality of biscuits and to enrich them with natural anthocyanins. CyTA - J. Food 11: 301.
* Pasqualone A., Bianco A.M., Paradiso V.M., Summo C., Gambacorta G. and Caponio F. 2014. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Res. Int. 65:385.
* Pazos M. et al. 2005. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem. 92, 547–557.
* Pazos M., Gallardo J.M., Torres J.L. and Medina I. 2005. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem. 92:547.
* Peng X. et al. 2010. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 119, 49-53.
* Peng X., Ma J., Cheng K.-W., Jiang Y., Chen F. and Wang M. 2010. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 119: 49.
* Pinelo M. et al. 2007. Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. Eur. Food Res. Technol. 226, 199-205.
* Ribeiro B., Cardoso C., Silva H.A., Serrano C., Ramos C., Santos P.C. Santos P. C. and Mendes R. 2013. Effect of grape dietary fibre on the storage stability of innovative functional seafood products made from farmed meagre (Argyrosomus regius). Int. J. Food Sci. Technol. 48: 10.
* Rice-Evans C. et al. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159.
* Rivera O.M.P. et al. 2007. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Proc. Biochem. 42(6), 1010-1020.
* Rojas M.C. and Brewer M.S. 2007. Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork. J. Food Sci. 72: 282.
* Rosales Soto M. et al. (2012). Antioxidant activity and consumers acceptance of grape seed flour-containing food products. Int. Food Sci.Technol., 47, 592-602.
* Sagdic O. et al. 2011. RP-HPLC–DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: Evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem. 126, 1749–1758.
* Sagdic O., Ozturk I., Ozkan G. Yetim H., EkiciL. and Yilmaz M. T. 2011. RP-HPLC–DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: Evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem. 126:1749.
* Sánchez-Alonso I. et al. 2007. Effect of grape antioxidant dietary fibre on the prevention of lipid oxidation in minced fish: Evaluation by different methodologies. Food Chem. 101, 372–378.
* Sánchez-Alonso I. et al. 2007. Physical Study of Minced Fish Muscle with a White-Grape By-Product Added as an Ingredient. J. Food Sci., 72, Nr. 2, 94-101.
* Sánchez-Alonso I., Borderías A.J. 2008. Technological effect of red grape antioxidant dietary fibre added to minced fish muscle. Int. J. Food Sci. Technol., 43, 1009–1018.
* Sanchez-Alonso I., Jimenez-Escrig A., Saura-Calixto F. and Borderias A.J. 2008. Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT - Food Sci. Technol.41:42.
* Sant’Anna V., Christiano F.D.P., Marczak L.D.F., Tessaro I.C. and Thys R.C.S. 2014. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT - Food Sci. Technol. 58: 497.
* Saura-Calixto F. 1998. Antioxidant dietary fiber product: a new concept and a potential food ingredient. J Agric. Food Chem. 46:4303.
* Sáyago-Ayerdi S.G., Brenes A. and Goñi I. 2009. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT - Food Sci. Technol. 42: 971.
* Scoma A., Rebecchi S., Bertin L. and Fava F. 2016. High impact biowastes from South European agro industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 36: 175.
* Selani M.M., Contreras-Castillo C.J., Shirahigue L.D., Gallo C.R., Plata-Oviedo M. and Montes Villanueva N.D. 2011. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 88: 397.
* Shah N.P., Ding W.K., Fallourd M.J., and Leyer G. 2010. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. J. Food Sci. 75:M278.
* Shemer R. et al. 2008. Fruit juice and puree with a lowered amount of available sugars. [Patent] PCT International Patent Application. WO 2008/102336 A2.
* Shrikhande, A.J. 2000. Wine by-products with health benefits. Food Res. Int. 33, 469-474
Siró I., Kápolna E., Kápolna B., and Lugasi A. 2008. Functional food. Product development, marketing and consumer acceptance - A review. Appetite 51: 456.
* Solfrizzo M., Piemontese L., Gambacorta L., Zivoli R. and Longobardi F. 2012. Food coloring agents and plant food supplements derived from Vitis vinifera: a new source of human exposure to ochratoxin A. J. Agric. Food Chem. 63:3614.
* Soto M.L., Moure A., Domínguez H. and Parajó J.C. 2011. Recovery, concentration and purification
of phenolic compounds by adsorption: A review. J. Food Eng.105:1.
* Spinelli S., Padalino L., Costa C., Del Nobile M.A., Conte A. Food by-products to fortified pasta: A new approach for optimization. Journal of Cleaner Production. 215: 985-991.
* Šporin M., Avbelj M., Kovač B., Možina S.S.  Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International. 24: 251-263.
* Sun J., Elena G.G., Peng H.X., Guo Q., Yang B., Zhu E.J. 2009. Variation in content of monomeric phenolics during the processing of grape seed and skin flours. Animal Production Science. 49: 170-175.
* Teixeira A., Baenas N., Dominguez-Perles R., Barros A., Rosa E., Moreno D.A. and Garcia-Viguera C. 2014. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 15:15638.
* Travaglia F., Bordiga M., Locatelli M., Coïsson J.D. and Arlorio M. 2011. Polymeric proanthocyanidins in skins and seeds of 37 Vitis vinifera L. cultivars: A methodological comparative study. J. Food Sci. 76:C742.
* Tseng A. and Zhao Y. 2013. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 138:356.
* Tuorila H. 2007. Sensory perception as a basis for food acceptance and consumption. In “Consumer-led food product development” Mac Fie (Ed.), p. 34. Cambridge: Woodhead Publishing.
* Tzima K., Kallithraka S., Kotseridis Y. and Makris D.P. 2015. A comparative evaluation of aqueous natural organic acid media for the efficient recovery of flavonoids from red grape (Vitis vinifera) pomace. Waste Biomass Valorization 6:391.
* Urquiaga I.,Troncoso D., Mackenna M.J., Urzúa C.,Pérez D., Dicenta, S., de la Cerda P.M., Amigo L., Carreño J.C., Echeverría G., Rigotti A. 2018. The consumption of beef burgers prepared with wine grape pomace flour improves fasting glucose, plasma antioxidant levels, and oxidative damage markers in humans: A controlled trial. Nutrients. 10: 1388.
* Verbeke W. 2006. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Prefer. 17:126.
* Vermerris W., Nicholson R. 2006. Phenolic Compounds Biochemistry. Springer Edition
* Vidal S., Francis L., Noble A., Kwiatkowski M., Cheynier V. and Waters E. 2004. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta
* Walker R., Tseng A., Cavender G., Ross A. and Zhao Y. 2014. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 79:S1811.
* Wang R. et al. 2007. Comparison study of the effect of green tea extract on the quality of bread by instrumental analysis and sensory evaluation. Food Res. Int. 40, 470-479.
* Yu J. and Ahmedna M. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 48:221.
* Zagklis, D.P. and Paraskeva C.A. 2015. Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 156:328.

Torna ai contenuti